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Abstract

In this paper, we describe methods of elementary proof for the properties of the Pavillet tetra-
hedron. This solid gives students a great opportunity for in-depth study of perpendicularity in
space and testing of various methods of proof. We have derived new methods for proving some
theorems of plane triangle geometry, for example, the existence of the Gergonne point, the per-
pendicularity of Soddy line and Gergonne line.

1 Introduction
The orthocentric tetrahedron of triangle [8], [7] is a simple construction which gives students a

great opportunity for in-depth study of perpendicularity in space and testing of various methods of
proof. In this paper, we give elementary proofs of the main properties of a Pavillet tetrahedron. We
use simple and sometimes coarse methods of proofs. Students may create their own short and elegant
methods based on inversion or other transformations of the space.

2 Description of a Pavillet tetrahedron and its main property
Let’s consider a triangle ABC, named the base triangle, be given. Let its incircle be centered in

I and A1B1C1 be the contact triangle of ABC. Let segments AA′, BB′, CC ′ be perpendicular to the
plane ABC, where AA′ = AB1, BB

′ = BC1, CC
′ = CA1. Let us name the solid IA′B′C ′ as the

Pavillet tetrahedron of the triangle ABC [9, § 2], [3]. Let us name triangle A′B′C ′ as upper triangle.
This tetrahedron is shown on figure 1.

3 The tetrahedron is orthocentric
Theorem 1 The segment B′C ′ is perpendicular to the plane IA′A1.

Proof.
Let A′1 be the foot of the perpendicular dropped from A1 on B′C ′ (fig. 2) and denote x = AB1 =

AC1 = AA′, y = BC1 = BA1 = BB′ and z = CA1 = CB1 = CC ′. Hence

A1B
′2 = 2 y2, A1C

′2 = 2 z2 ⇒ A′B′
2
= (x+ y)2 + (x− y)2 = 2 (x2 + y2).

We use A′1A1⊥B′C ′ and we get

A′1B
′2 − A′1C ′

2
= A1B

′2 − A1C
′2 = 2 (y2 − z2)
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Figure 1: The Pavillet Tetrahedron of ABC
(Use mouse click to activate an interactive figure).

We calculate A′B′2 −A′C ′2 = 2 (y2 − z2), it implies similarly that A′A′1 is an altitude of the triangle
A′B′C ′. Now we also haveB′I2−C ′I2 = 2 (y2−z2). Hence IA′1⊥B′C ′, combined withA′1A1⊥B′C ′
it yields that the points I, A′, A1, lie on the same plane perpendicular to B′C ′. This plane contains the
point A′1 on B′C ′.

We proved that the plane IA′A′1 is perpendicular to the boundary plane BB′C ′.

Figure 2: Plane IA′A′
1 is perpendicular to boundary plane BCB′C ′

(Use mouse click to activate an interactive figure).

Theorem 2 The Pavillet tetrahedron is orthocentric.

Proof.
From Theorem 1, the plane IA′A′

1 is perpendicular to the boundary plane BB′C ′. Therefore
IA′⊥B′C ′, similarly we get IB′⊥C ′A′ and IC ′⊥A′B′. From [1, Definition 208, p. 62] this tetrahe-
dron is orthocentric.
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4 Altitudes of the tetrahedron
Theorem 3 The straight line joining a vertex of the upper triangle to the corresponding vertex of the
contact triangle of the base triangle (e.g. A′A1) is an altitude of the tetrahedron.

Proof.

• It is clear, that A′A1⊥B′C ′ as a line belonging to the plane IA′A′1.

• We consider the quadrilateral IA′A′1A1 and compute the quantity A′I2 − A1I
2. We get

A′I2 − A1I
2 = A′B2

1 +B1I
2 − A1I

2 = A′B2
1 = 2x2. (1)

Figure 3: The line A′A1 is perpendicular to the plane IB′C ′

(Use mouse click to activate an interactive figure).

• In the same quadrilateral, we compute the quantity A′A′21 −A1A
′2
1 . Let E and F lie onBC such

that A′1E⊥BC,AF⊥BC (fig. 3). Then

A′A′21 − A1A
′2
1 = (A′A− A′1E)2 + AF 2 + EF 2 − A1A

′2
1 .

We use the right triangle A1B
′C ′ with legs A1B

′ = y
√
2, A1C

′ = z
√
2. We get the square of

the height

A1A
′2
1 =

2 y2 z2

y2 + z2
, B′A′21 =

2 y4

y2 + z2
, C ′A′21 =

2 z4

y2 + z2
.

We use the trapezium (British definition) BB′C ′C and get

A′1E =
y z (y + z)

y2 + z2
.

From the right triangle A1A
′
1E, we get the leg A1E = y z |y−z|

y2+z2
. We use the formulas for the area

of triangle ABC and get the square of the altitude AF 2 = 4x y z (x+y+z)
(y+z)2

. We use the formula for
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distance between base of height and tangent point for incircle and get A1F = x |y−z|
y+z

. Finally,
we use formula for square of incircle radius A1I

2 = C1I
2 = x y z

x+y+z
.

After substitutions and simplifications we get

A′A′21 − A1A
′2
1 = 2x2.

• We recall, to finish the proof, that “for any orthodiagonal quadrilateral, the sum of the squares
of two opposite sides equals that of the other two opposite sides and conversely”.

Now, because we have found that 2x2 = A′I2 − A1I
2 = A′A′21 − A1A

′2
1 , the sides of the

quadrilateral IA′A′1A1 comply with the equation

A′I2 + A1A
′2
1 = A′A′21 + A1I

2

so that IA′A′1A1 is orthodiagonal and A′A1⊥IA′1.

We have proved that A′A1 being perpendicular to IA′1 and B′C ′, hence to the plane IB′C ′, is an
altitude of IA′B′C ′.
4.1 Orthogonal Projection of the Orthocenter

Figure 4: Orthogonal Projection of the Orthocenter
(Use mouse click to activate an interactive figure).

Theorem 4 The orthogonal projection of the orthocenter of the Pavillet tetrahedron on the plane of
its base triangle is the Gergonne point of this base triangle.

Proof.
Theorem 3 shows that the lines A′A1, B′B1 and C ′C1 are three altitudes of the orthocentric tetra-

hedron. They intersect at the point Ho orthocenter of the tetrahedron (fig. 4). Each of these altitudes
lies in a plane perpendicular to the plane A′B′C ′, e.g. A1A

′ in the plane AA1A
′ which contain

AA′⊥ABC. Let G be the point of intersection of the lines AA1 and BB1, orthogonal projections
of the lines A′A1 and B′B1 on the base plane ABC. Then H0G is perpendicular to the base plane.
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Now, because C ′C1 also goes through G, the line CC1 which is the orthogonal projection of C ′C1 is
concurrent with AA1 and BB1.

As the reader sees, we have proved the existence of the Gergonne point. We also have proved that
the orthogonal projection of the orthocenter of the Pavillet tetrahedron on the plane of its base triangle
is the Gergonne point of its base triangle.

5 Axis of perspective
Theorem 5 The corresponding sides of the base triangle, the upper triangle and the contact triangle
are concurrent.

Figure 5: Three concurrent lines
(Use mouse click to activate an interactive figure).

Proof.
We use Menelaus’ theorem for the sides of the triangle ABC cut by the line A1B1 (fig. 5). We get

the distance BK from the point of intersection K of the lines AB and A1B1 as BK = AB·A1B
|AC−BC| . We

use proportion for the trapezium ABB′A′, we get the distance BK1 from the point K1, intersection
of the lines AB and A′B′ as BK1 = AB·A1B

|AC−BC| . Hence BK = BK1 and the points K and K1 are
coincident.

Theorem 6 The plane of the base triangle and the plane of the upper triangle intersect along the
Gergonne line of the base triangle.

Proof.
The line AB is a projection of the line A′B′ on the base plane. Hence the point of intersection

of the lines AB and A′B′ lies on the line of intersection of the planes ABC and A′B′C ′ (fig. 6).
Similarly, K ′, point of intersection of the lines AC and A′C ′, and K ′′, point of intersection of the
lines BC and B′C ′ lie on the line of intersection of the planes ABC and A′B′C ′. So points K,K ′

and K ′′ are collinear. These points are also the crossing points of the lines AB,A1B1, and similar.
According to the definition, these points lie on the polar of the Gergonne point of ABC, the point of
intersection of the Cevians AA1, BB1 and CC1.

Hence we proved that these points are collinear and lie on the Gergonne line of ABC.
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Figure 6: Intersection of the base plane and the upper plane
(Use mouse click to activate an interactive figure).

6 Soddy line an circles.
Theorem 7 The Soddy line is perpendicular to the Gergonne line.

This property is found in [6, p. 324 §6].

Figure 7: The Soddy line of a triangle is perpendicular to its Gergonne line
(Use mouse click to activate an interactive figure).

Proof.
By definition, the Soddy line contains the Gergonne point G and the incenter I [6, p. 319]. The

plane IGH0 is perpendicular to the base plane ABC because GHo⊥ABC (fig. 7). The plane IGH0

is also perpendicular to the upper plane A′B′C ′ because IHo is an altitude of the orthocentric Pavil-
let tetrahedron. Hence the Gergonne line KK ′ which, from Theorem 6, belongs to both planes is
perpendicular to the plane IGHo and therefore to the line IG.

Theorem 8 The Soddy inner and outer centers lie on the Soddy line.
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Proof.
Let S be the inner Soddy center (as defined in [2, § 2-3] or [5]). Let So belongs to the same half-

space define by the base plane as the Pavillet tetrahedron, such that SSo⊥ABC and SSo = ρ where ρ
is the radius of the inner Soddy circle. We call Sa the point of contact of the inner Soddy circle with
the circle centered at A with radius x. The points A, Sa, S are collinear. The triangle SoSaA

′ is right,
hence Sa

SoA
′2 = SoS

2
a + SaA

′2 = 2 ρ2 + 2x2

and we find similarly SoB
′ and SoC

′. Using (1), we find that

A′I2 −B′I2 = 2x2 − 2 y2 = A′S2
o −B′S2

o

and
A′I2 − C ′I2 = 2x2 − 2 z2 = A′S2

o − C ′S2
o .

So we proved that points I and So lie on the same perpendicular to the plane A′B′C ′ (fig. 8). The
point S being the projection of So on the plane ABC lies on the Soddy line, projection of IHo on the
base plane. The reader can make a similar proof for the outer Soddy center.

Figure 8: The Soddy inner center lies on the Soddy line
(Use mouse click to activate an interactive figure).
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7 The circumcircle sphere
Definition 9 We define the circumcircle sphere as the sphere having the circumcircle of the base
triangle as diametral circle.

Theorem 10 The trace of the circumcircle sphere of the base triangle on the plane of the upper
triangle is the Euler circle of this triangle.

Proof.
Let C2 be the midpoint of the side AB of the base triangle and C ′2 be the midpoint of the side

A′B′ of the upper triangle (fig. 9). Let O be the circumcenter of the base triangle so that OC2⊥AB.
From the trapezium AA′′B′B, we understand that

C2C
′
2 = C2A =

x+ y

2
.

Hence,OA = OC ′2 = RwhereR is the radius of the circumcircle of the base triangleABC. Similarly
OA′2 = OB′2 = R. Therefore all midpoints of the sides of the upper triangle lie on the circumcircle
sphere of the base triangle (fig. 10).

Corollary 11 The centroid of the Pavillet tetrahedron lies on the line joining the circumcenter of the
base triangle to the center of the Euler circle of the upper triangle.

Proof.
The center of the first twelve point sphere of an orthocentric tetrahedron is its centroid [1, § 797-

798]. Now, because the trace of the first twelve point sphere on the face of the upper triangle is also
the Euler circle of this triangle, its center lies on a perpendicular to the upper face going through the
center of this circle, but the center of the circumcircle sphere also lies on this perpendicular.

Figure 9: Radius of the circumcircle sphere
(Use mouse click to activate an interactive figure).
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Figure 10: The Euler circle of the upper triangle is the trace of the circumcircle sphere of the base
triangle on the upper plane

(Use mouse click to activate an interactive figure).

8 Conclusions

We have given elementary geometric or algebraic proofs of the fundamental properties of the
Pavillet tetrahedron. Moreover we have found elementary proofs for a number of properties of the
Soddy line of a triangle. Lots of geometric properties remained to be discovered about this new object
and from the use of inversion or other transformations we probably could also derive interesting
results.

Though it is not new to use solid geometry to solve plane geometry problems, it is rather unusual
in triangle geometry (may be with the exception of [4, § 486 p. 290]). Hence the discovery of the
Pavillet tetrahedron gives a new dimension to triangle geometry. There is not only a correspondence
between the base triangle and the tetrahedron, we have also found a correspondence between the base
triangle and the upper triangle. The Pavillet tetrahedron could be a new type of triangle transformation
which would need to be formalized. In the meantime, it allows finding new short ways to prove
some well known results about triangle properties usually found with quite labor-intensive methods.
Students which study geometry, get one more tool to address known problems in an unusual way and
to demonstrate the unity of the world of mathematics.
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